Observatorio de I+D+i UPM

Memorias de investigación
Engineering nitrogenase in eukaryotes
Áreas de investigación
  • Ciencias naturales y ciencias de la salud
Nitrogenases catalyze the conversion of N2 into NH3, a process known as biological N2 fixation, that has enormous economical and ecological significance. Only some prokaryotic organisms called diazotrophs are able to fix N2. At a global biogeochemical scale -and not taking into account the anthropogenic input via synthetic N fertilizers- all other organisms ultimately rely on the activity of diazotrophs to obtain their N.1 The awareness that biological N2 fixation can be used as alternative to the synthetic N fertilizers in the implementation of modern sustainable agricultural practices is an underlying driving force for nitrogenase studies. The extensive use of synthetic N fertilizers in developed countries poses enormous environmental threats that must be addressed. In contrast, N fertilization is scarcely used in Sub-Saharan Africa deriving in very low crop yields, poverty and hunger. An ambitious challenge of plant biotechnology is to increase cereal crop productivity by engineering plants to fix their own nitrogen, i.e. by functional expression of bacterial N2 fixation (nif) genes in the plant.2,3 Two identified barriers have traditionally impaired this approach: the known sensitivity of nitrogenase to O2 (the byproduct of plant photosynthesis) and the apparent genetic/biochemical complexity of nitrogenase biosynthesis. Balanced expression of at least 9 nif gene is required to mature nitrogenase structural polypeptides into their catalytically active forms.4 This makes transformation schemes particularly challenging. We are addressing this problem by using a combination of synthetic biology techniques -to generate the required large number of complex multigene constructs- and biochemical complementation assays to determine whether required enzymatic activities have been successfully transferred to the eukaryote. This talk will summarize our advances in this field.
Entidad relacionada
Nacionalidad Entidad
Lugar del congreso
Munich. Alemania
Esta actividad pertenece a memorias de investigación
  • Autor: Luis Manuel Rubio Herrero (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: BIOLOGÍA MOLECULAR Y COMPUTACIONAL
  • Centro o Instituto I+D+i: Centro de Biotecnología y Genómica de Plantas, CBGP
  • Departamento: Biotecnología - Biología Vegetal
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)