Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Multi-Target Detection and Estimation with the Use of Massive Independent, Identical Sensors
Año:2015
Áreas de investigación
  • Ciencias de la computación y tecnología informática
Datos
Descripción
This paper investigates the problem of using a large number of independent, identical sensors jointly for multi-object detection and estimation (MODE), namely massive sensor MODE. This is significantly different to the general target tracking using few sensors. The massive sensor data allows very accurate estimation in theory (but may instead go conversely in fact) but will also cause a heavy computational burden for the traditional filter-based tracker. Instead, we propose a clustering method to fuse massive sensor data in the same state space, which is shown to be able to filter clutter and to estimate states of the targets without the use of any traditional filter. This non-Bayesian solution as referred to massive sensor observation-only (O2) inference needs neither to assume the target/clutter model nor to know the system noises. Therefore it can handle challenging scenarios with few prior information and do so very fast computationally. Simulations with the use of massive homogeneous (independent identical distributed) sensors have demonstrated the validity and superiority of the proposed approach.
Internacional
Si
Nombre congreso
SPIE 2015
Tipo de participación
960
Lugar del congreso
Revisores
Si
ISBN o ISSN
0277-786X
DOI
10.1117/12.2177973
Fecha inicio congreso
20/04/2015
Fecha fin congreso
21/04/2015
Desde la página
1
Hasta la página
10
Título de las actas
SPIE 2015. Sensors and Systems for Space Applications VIII, 94690G SPIE Digital Library SPIE Proceedings Vol. 9469-15 https://spie.org/Publications/Proceedings/Paper/10.1117/12.2177973
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Javier Bajo Perez (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Ontology Engineering Group
  • Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)