Memorias de investigación
Communications at congresses:
High-brightness multi-section semiconductor laser for space-borne lidar measurements of atmospheric carbon dioxide

Research Areas
  • Optics, electromagnetism,
  • Electronic technology and of the communications

The availability of suitable laser sources is one of the main challenges in future space missions for accurate measurement of atmospheric CO2. In the framework of European Project BRITESPACE, we propose an all-semiconductor laser source for an Integrated Path Differential Absorption (IPDA) lidar system for column-averaged measurements of atmospheric CO2 in future satellite missions. Semiconductor lasers are superior to other types of lasers in terms of reliability, compactness and efficiency, but they cannot provide the high peak power required by the application. In consequence, the complete system architecture has to be adapted to the particular emission properties of these devices. The proposed transmitter design is based on two InGaAsP/InP monolithic Master Oscillator Power Amplifiers (MOPAs), providing the ON and OFF wavelengths close to the selected absorption line around 1.57 ?m. Each MOPA consists of a frequency stabilized Distributed Feedback (DFB) master oscillator, a modulator section, and a tapered amplifier. Initial experimental results on the fabricated MOPAs indicate that the use of a bended structure to avoid undesired feedback provides good spectral properties together with high output power and good beam quality. The modulator section is required by the Random Modulated Continuous Wave (RM-CW) approach that has been selected as the best adapted to semiconductor laser. The fabricated lasers provide single mode emission with maximum powers of around 600 mW, and more than 20 dB extinction ratio when internally modulating the laser at a bit rate of 25 Mb/s as required by the application. The laser module includes the beam forming optics and the thermoelectric coolers. The DFB emission is tuned and stabilized by an offset locking technique referenced to a CO2 gas cell.
Workshop on ?Laser Diodes for Space Applications?
Palaiseau, France
Start Date
End Date
From page
To page
Workshop on ?Laser Diodes for Space Applications? Book of Abstracts
  • Autor: Ignacio Esquivias Moscardo UPM
  • Autor: Mariafernanda Vilera Suárez UPM
  • Autor: Antonio Perez Serrano UPM
  • Autor: Jose Manuel Garcia Tijero UPM
  • Autor: Mickael FAUGERON III-V Lab
  • Autor: Frédéric VAN DIJK III-V Lab
  • Autor: Michel KRAKOWSKI ( III-V Lab
  • Autor: Gerd KOCHEM Fraunhofer Institute for Laser Technology (ILT)
  • Autor: Martin TRAUB Fraunhofer Institute for Laser Technology (ILT)
  • Autor: Juan BARBERO Alter Technology Tüv Nord S.A.U.,
  • Autor: Pawel ADAMIEC Alter Technology Tüv Nord S.A.U.,
  • Autor: Xiao AI University of Bristol
  • Autor: John RARITY University of Bristol
  • Autor: Mathieu QUATREVALET Institut für Physik der Atmosphäre, DLR
  • Autor: Gerhard EHRET Institut für Physik der Atmosphäre, DLR

Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Grupo de Fotónica Aplicada
  • Centro o Instituto I+D+i: Centro de Materiales y Dispositivos Avanzados para Tecnologías de Información y Comunicaciones
  • Departamento: Tecnología Fotónica y Bioingeniería
  • Departamento: Estructuras y Física de Edificación