Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
A Fast Iterative Algorithm for Improved Unsupervised Feature Selection
Año:2016
Áreas de investigación
  • Ciencias de la computación y tecnología informática
Datos
Descripción
Dimensionality reduction is often a crucial step for the successful application of machine learning and data mining methods. One way to achieve said reduction is feature selection. Due to the impossibility of labelling many data sets, unsupervised approaches are frequently the only option. The column subset selection problem translates naturally to this purpose, and has received consider able attention over the last few years, as it provides simple linear models for data reconstruction. Existing methods, however, often achieve approximation errors that are far from the optimum. In this paper we present a novel algorithm for column subset selection that consistently outperforms state-of-the-art methods in approximation error. We present a series of key derivations that allow an efficient implementation, making it comparable in speed and in some cases faster than other algorithms. We also prove results that make it possible to deal with huge matrices, which has strong implications for other algorithms of this type in the big data field. We validate our claimsthrough experiments on a wide variety of well-known data sets.
Internacional
Si
Nombre congreso
IEEE 16th International Conference on Data Mining - ICDM ( (Alpha Core Ranking: CORE A*)
Tipo de participación
960
Lugar del congreso
Barcelona, España
Revisores
Si
ISBN o ISSN
2374-8486
DOI
10.1109/ICDM.2016.0050
Fecha inicio congreso
12/12/2016
Fecha fin congreso
14/12/2016
Desde la página
390
Hasta la página
399
Título de las actas
Proceedings of IEEE 16th International Conference on Data Mining. Editorial: IEEE
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Sandra Maria Gomez Canaval (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de Modelización Matemática y Biocomputación
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)