Memorias de investigación
Communications at congresses:
Geometric Characteristics of Rational Bézier Quadric Patches
Year:2016

Research Areas
  • Mathematics,
  • Mechanical aeronautics and naval engineering,
  • Civil engineering and architecture

Information
Abstract
1. This talk is mainly about How to draw geometric information from rational Bézier quadric triangles using just their control points and their weights. This is joint work with A. Cantón, L. Fernández-Jambrina and E. Rosado. In particular, we get closed formulas for geometric elements of quadrics (surfaces) in rational Bézier triangular form starting from just their control points and their weights, employing algebraic projective geometry techniques. In addition, 1) Using the same data (control points and weights of quadrics in rational Bézier triangular form), we can get: - Closed formulas for the implicit equation of quadrics. - An affine classification of quadrics in Bézier form. 2) We can extend the results to quadric tensor product patches and to rational biquadratic quadric patches.
International
Si
Congress
Mathematical Models for Curves and Surfaces (MMCS09)
960
Place
Tronsberg, Noruega
Reviewers
Si
ISBN/ISSN
Start Date
23/06/2016
End Date
28/06/2016
From page
To page
Participants

Research Group, Departaments and Institutes related
  • Creador: Departamento: Matemática Aplicada