Abstract
|
|
---|---|
The phosphosilicate glass (PSG), fabricated by tube furnace diffusion using a POCl3 source, is widely used as a dopant source in the manufacturing of crystalline silicon solar cells. Although it has been a widely addressed research topic for a long time, there is still lack of a comprehensive understanding of aspects such as the growth, the chemical composition, possible phosphorus depletion, the resulting in-diffused phosphorus profiles, the gettering behavior in silicon, and finally the metal-contact formation. This paper addresses these different aspects simultaneously to further optimize process conditions for photovoltaic applications. To do so, a wide range of experimental data is used and combined with device and process simulations, leading to a more comprehensive interpretation. The results show that slight changes in the PSG process conditions can produce high-quality emitters. It is predicted that PSG processes at 860?°C for 60?min in combination with an etch-back and laser doping from PSG layer results in high-quality emitters with a peak dopant density Npeak?=?8.0?×?1018?cm?3 and a junction depth dj?=?0.4?m, resulting in a sheet resistivity?sh?=?380 ?/sq and a saturation current-density J0 below 10 fA/cm2. With these properties, the POCl3 process can compete with ion implantation or doped oxide approaches. | |
International
|
Si |
JCR
|
Si |
Title
|
Journal of Applied Physics |
ISBN
|
0021-8979 |
Impact factor JCR
|
2,185 |
Impact info
|
|
Volume
|
119 |
|
|
Journal number
|
|
From page
|
185704-1 |
To page
|
185704-9 |
Month
|
SIN MES |
Ranking
|