Memorias de investigación
Research Publications in journals:
Feature extraction from smartphone inertial signals for human activity segmentation
Year:2016

Research Areas
  • Electronic technology and of the communications,
  • Electric engineers, electronic and automatic (eil)

Information
Abstract
This paperproposestheadaptationofwell-knownstrategiessuccessfullyusedinspeech processing: MelFrequencyCepstralCoefficients (MFCCs)andPerceptualLinearPrediction (PLP) coefficients. AdditionallycharacteristicslikeRASTA filtering ordeltacoefficients are also consideredandevaluatedforinertialsignalprocessing.Theseadaptationshavebeen incorporated intoaHumanActivityRecognitionandSegmentation(HARS)systembased on HiddenMarkovModels(HMMs)forrecognizingandsegmentingsixdifferentphysical activities: walking,walking?upstairs, walking-downstairs,sitting,standingandlying. All experimentshavebeendoneusingapubliclyavailabledatasetnamedUCIHuman ActivityRecognitionUsingSmartphones,whichincludesseveralsessionswithphysical activity sequencesfrom30volunteers.Thisdatasethasbeenrandomlydividedintosix subsets forperformingasix-foldcrossvalidationprocedure.Foreveryexperiment, averagevaluesfromthesix-foldcross-validationprocedureareshown. The resultspresentedinthispaperovercomesignificantly baselineerrorrates,con- stitutingarelevantcontributioninthe field. AdaptedMFCCandPLPcoefficients improve human activityrecognitionandsegmentationaccuracieswhilereducingfeaturevector size considerably.RASTA-filtering anddeltacoefficients contributesignificantly toreduce the segmentationerrorrateobtainingthebestresults:anActivitySegmentationError Rate lowerthan0.5%.
International
Si
JCR
Si
Title
Signal Processing
ISBN
0165-1684
Impact factor JCR
2,063
Impact info
Volume
120
10.1016/j.sigpro.2015.09.029
Journal number
From page
359
To page
372
Month
MARZO
Ranking
Journal Rank in Category 66/255; Quartile in Category Q2)
Participants

Research Group, Departaments and Institutes related
  • Creador: Grupo de Investigación: Grupo de Tecnología del Habla