Observatorio de I+D+i UPM

Memorias de investigación
Tesis:
Big Medical Text Analytics: Querying, Searching and Understanding Clinical Data
Año:2017
Áreas de investigación
  • Ciencias de la computación y tecnología informática
Datos
Descripción
La creciente generación de datos en distintos sectores debido a la digitalización ha provocado un cambio en las técnicas para almacenarlos, procesarlos y extraer valor y conocimiento de diferentes conjuntos de datos. Este cambio ha afectado también a sectores tradicionales como el sector de la salud, que ha sufrido un proceso de transformación. La cantidad de datos médicos generados está aumentando a medida que la adopción de las Historias Clínicas Electrónicas (HCE) se convierte en un estándar en los países desarrollados. El impacto económico de la digitalización de los datos médicos se estima en $300.000 millones anuales. La mayor parte de los datos generados en el sector de la salud, son datos no estructurados: texto e imágenes. El énfasis de esta tesis está en el desarrollo de nuevas técnicas y métodos que permitan la estructuración y la extracción de conocimiento de los textos escritos y almacenados en las HCEs. Estos datos cobran especial relevancia dado que contienen información sobre la salud de los pacientes, los signos, síntomas, tratamientos, enfermedades y evolución de los mismos. La riqueza de estos datos que aún no están aprovechados, puede servir para el desarrollo de sistemas de información que ayuden a los médicos a tomar decisiones. La investigación desarrollada se centra en el análisis de la estructuración de los datos mencionados en las HCEs, así como en los retos que esto supone. El uso de modelos estadísticos para identificar las estructuras básicas del lenguaje en textos escritos en espa?nol sienta las bases del resto de los desarrollos. La identificación de los distintos términos médicos mencionados, así como los nombres de medicamentos, la detección de la positividad o negatividad de una frase, junto con la desambiguación de los acrónimos y abreviaturas usados, son parte de los problemas analizados en esta tesis de investigación. Para la realización de estos análisis, se ha dise?nado una arquitectura denominada H2A: Human Health Analytics (H2A), que permite la interoperabilidad de los distintos componentes desarrollados y que provee de la flexibilidad correspondiente para su uso en distintos casos de estudio. Como parte del desarollo de esta tesis, se han aplicado los métodos y técnicas desarrollados en el estudio de un caso de uso real: el análisis de la evolución de pacientes de ictus. Este caso de estudio demuestra el potencial de estos métodos y su aplicabilidad en escenarios en los que se utilizan datos reales. Finalmente, para remarcar el enfoque industrial de esta tesis, se ha realizado un análisis del mercado y un modelo de negocio para poder comercializar la tecnología desarrollada en esta tesis.
Internacional
Si
ISBN
Tipo de Tesis
Doctoral
Calificación
Sobresaliente cum laude
Fecha
20/09/2017
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Roberto Costumero Moreno (UPM)
  • Director: Ernestina Menasalvas Ruiz (UPM)
  • Director: Consuelo Gonzalo Martin (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Minería de Datos y Simulación (MIDAS)
  • Centro o Instituto I+D+i: Centro de tecnología Biomédica CTB
  • Departamento: Arquitectura y Tecnología de Sistemas Informáticos
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)