Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
An evolutionary algorithm based on Minkowski distance for many-objective optimization
Año:2018
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
The existing multiobjective evolutionary algorithms (EAs) based on nondominated sorting may encounter serious difficulties in tackling many-objective optimization problems (MaOPs), because the number of nondominated solutions increases exponentially with the number of objectives, leading to a severe loss of selection pressure. To address this problem, some existing many-objective EAs (MaOEAs) adopt Euclidean or Manhattan distance to estimate the convergence of each solution during the environmental selection process. Nevertheless, either Euclidean or Manhattan distance is a special case of Minkowski distance with the order P=2 or P=1, respectively. Thus, it is natural to adopt Minkowski distance for convergence estimation, in order to cover various types of Pareto fronts (PFs) with different concavity-convexity degrees. In this paper, a Minkowski distance-based EA is proposed to solve MaOPs. In the ?
Internacional
Si
JCR del ISI
Si
Título de la revista
Ieee Transactions on Cybernetics
ISSN
2168-2267
Factor de impacto JCR
8,803
Información de impacto
Volumen
DOI
Número de revista
Desde la página
1
Hasta la página
12
Mes
SIN MES
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Hang Xu
  • Autor: Wenhua Zeng
  • Autor: Xiangxiang Zeng . (UPM)
  • Autor: Gary G Yen
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de Inteligencia Artificial (LIA)
  • Departamento: Inteligencia Artificial
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)