Observatorio de I+D+i UPM

Memorias de investigación
Capítulo de libro:
BELID: Boosted Efficient Local Image Descriptor
Año:2019
Áreas de investigación
  • Inteligencia artificial
Datos
Descripción
Efficient matching of local image features is a fundamental task in many computer vision applications. Real-time performance of top matching algorithms is compromised in computationally limited devices, due to the simplicity of hardware and the finite energy supply. In this paper we present BELID, an efficient learned image descriptor. The key for its efficiency is the discriminative selection of a set of image features with very low computational requirements. In our experiments, performed both in a personal computer and a smartphone, BELID has an accuracy similar to SIFT with execution times comparable to ORB, the fastest algorithm in the literature.
Internacional
Si
DOI
10.1007/978-3-030-31332-6_39
Edición del Libro
1
Editorial del Libro
Springer
ISBN
978-3-030-31331-9
Serie
Lecture Notes in Computer Science
Título del Libro
Pattern Recognition and Image Analysis. Proceedings Iberian Conference on Pattern Recognition and Image Analysis
Desde página
449
Hasta página
460
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Luis Baumela Molina (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Visión por Computador y Robótica Aérea
  • Departamento: Inteligencia Artificial
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)