Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Big Data and Emerging Transportation Challenges: Findings from the NOESIS project
Año:2019
Áreas de investigación
  • Ingenierías
Datos
Descripción
In the last years many Big Data technologies have been applied to the transportation sector all over the world. Despite existing and future promising applications, critical factors which lead to a successful application and value generation from Big Data technologies in transport are largely unknown. The European Union (EU) Horizon 2020 (H2020) NOESIS project aims at identifying critical features leading to the successful implementation of Big Data technologies and services in the field of transport. In order to accomplish that aim, key challenges of Big Data utilization in the transport domain, need to be initially identified. The scope of this paper is to present the research findings on the major Big Data in Transportation challenges. The NOESIS challenges describe the major transportation areas and sub-problems that could benefit by Big Data. Firstly, a literature review was conducted in order to obtain the main areas (challenges) within the transportation domain which have the potential of greater exploitation through Big Data methods. 10 initial focus areas were identified from reviewing the state-of-the-art in Big Data and transportation research. Secondly, findings from the literature review were discussed and validated during a workshop with experts on Big Data in Transportation, increasing those challenges to 13. For each of the focus areas, corresponding sub-problems have been also identified. The findings of this paper contribute to the exploitation of Big Data within transportation in two ways: i) it provides the necessary literature review and expertsâ? discussion for identifying the transport domain areas in which big data technologies could be successfully applied and ii) it identifies sub-problems linked to each of the challenges that big data could help to improve transportation. As a result, it is believed that this work initiates a first step towards enhancing the socioeconomic impact of transportation investments using Big Data.
Internacional
Si
Nombre congreso
MT?ITS 2019 6th Conference on Models and Technologies for Intelligent Transportation Systems.
Tipo de participación
960
Lugar del congreso
Cracovia (Polonia)
Revisores
Si
ISBN o ISSN
978-1-5386-9484-8
DOI
10.1109/MTITS.2019.8883308
Fecha inicio congreso
05/06/2019
Fecha fin congreso
07/06/2019
Desde la página
1
Hasta la página
9
Título de las actas
6th International Conference on Models and Technologies for Intelligent Transportation Systems.
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Natalia Sobrino Vazquez (UPM)
  • Autor: Christos Katrakazas (Technical University of Munich)
  • Autor: Constantinos Antoniou (Technical University of Munich)
  • Autor: Ilias Trochidis (Ortelio LTD (UK))
  • Autor: Stratos Arampatzis (Ortelio LTD (UK))
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Planificación del Transporte
  • Departamento: Ingeniería Civil: Construcción, Infraestructura y Transporte
  • Centro o Instituto I+D+i: Centro de Investigación del Transporte
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)