Observatorio de I+D+i UPM

Memorias de investigación
Capítulo de libro:
Semi-Automatic Training Set Construction for Supervised Sentiment Analysis in Polarized Contexts
Áreas de investigación
  • Física química y matemáticas,
  • Humanidades y ciencias sociales
Standard sentiment analysis techniques rely either on sets of rules based on semantic and affective information or in supervised machine learning approaches whose quality heavily depends on the size and significance of a training set of pre-labeled text samples. In many situations, this labeling needs to be performed by hand, potentially limiting the size of the training set. In order to address this issue, in this work we propose a methodology to retrieve text samples from Twitter and automatically label them. We then apply this methodology to several Twitter conversations and assess the quality of the produced training sets. Additionally, we also tackle the situation in which the base rates of positive and negative sentiment samples in the training and test sets are biased with respect to the system in which the classifier is intended to be applied. The results presented in this respect hold relevance beyond this particular application.
Edición del Libro
Editorial del Libro
Springer, Cham
Título del Libro
Putting Social Media and Networking Data in Practice for Education, Planning, Prediction and Recommendation. Lecture Notes in Social Networks
Desde página
Hasta página
Esta actividad pertenece a memorias de investigación
  • Autor: Samuel Martin Gutierrez (UPM)
  • Autor: Juan Carlos Losada Gonzalez (UPM)
  • Autor: Rosa Maria Benito Zafrilla (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Departamento: Ingeniería Agroforestal
S2i 2023 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)