Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Symmetric boundary element methods for Helmholtz transmission problems
Año:2007
Áreas de investigación
  • Matemáticas
Datos
Descripción
The study of Helmholtz transmission problems in two or three dimensions arises in many applications related to scattering of acoustic, thermal or electromagnetic waves. The problem consists of Helmholtz equations with different wave numbers in a bounded domain and its exterior coupled with some transmission conditions. Many different formulations and boundary element discretizations have been derived to deal in an efficient way with these problems. Here we propose a new formulation, based on a paper by Martin Costabel and Ersnt Stephan in 1985, that uses the Calder\'{o}n projector for the interior and exterior problems to develop closed expressions for the interior and exterior Neumann--to--Dirichlet operator. These operators are then matched to obtain an integral system that is equivalent to the Helmholtz transmission problem and uses Cauchy data on the transmission boundary as unknowns. By employing an additional mortar unknown with respect to the ones used in the original paper, we show that we can simplify the aspect and analysis of the method, writing it in an appropriate way to devise Krylov type iterations based on the separate Neumann--to--Dirichlet operators.
Internacional
No
Nombre congreso
XX CEDYA/X CMA
Tipo de participación
960
Lugar del congreso
Sevilla
Revisores
No
ISBN o ISSN
DOI
Fecha inicio congreso
24/09/2007
Fecha fin congreso
28/09/2007
Desde la página
Hasta la página
Título de las actas
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Francisco Javier Sayas (Universidad de Zaragoza)
  • Autor: Maria Luisa Rapun Banzo (UPM)
  • Autor: Antonio Laliena (Universidad de Zaragoza)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Dinámica y estabilidad no lineal en ingeniería aeroespacial
  • Departamento: Fundamentos Matemáticos de la Tecnología Aeronáutica
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)