Observatorio de I+D+i UPM

Memorias de investigación
Artículos en revistas:
Symmetric boundary integral formulations for Helmholtz transmission problems
Año:2009
Áreas de investigación
  • Matemáticas
Datos
Descripción
In this work we propose and analyze numerical methods for the approximation of the solution of Helmholtz transmission problems in two or three dimensions. This kind of problems arises in many applications related to scattering of acoustic, thermal and electromagnetic waves. Formulations based on boundary integral methods are powerful tools to deal with transmission problems in unbounded media. Different formulations using boundary integral equations can be found in the literature. We propose here new symmetric formulations based on a paper by Martin Costabel and Ernst P. Stephan (1985), that uses the Calderón projector for the interior and exterior problems to develop closed expressions for the interior and exterior Dirichlet-to-Neumann operators. These operators are then matched to obtain an integral system that is equivalent to the Helmholtz transmission problem and uses Cauchy data on the transmission boundary as unknowns. We show how to simplify the aspect and analysis of the method by employing an additional mortar unknown with respect to the ones used in the original paper, writing it in an appropriate way to devise Krylov type iterations based on the separate Dirichlet-to- Neumann operators.
Internacional
Si
JCR del ISI
Si
Título de la revista
APPLIED NUMERICAL MATHEMATICS
ISSN
0168-9274
Factor de impacto JCR
0,952
Información de impacto
Volumen
59
DOI
Número de revista
0
Desde la página
2814
Hasta la página
2823
Mes
ENERO
Ranking
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: Francisco-Javier Sayas (Universidad de Zaragoza)
  • Autor: Antonio Laliena (Universidad de Zaragoza)
  • Autor: Maria Luisa Rapun Banzo (UPM)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Dinámica y estabilidad no lineal en ingeniería aeroespacial
  • Departamento: Fundamentos Matemáticos de la Tecnología Aeronáutica
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)