Observatorio de I+D+i UPM

Memorias de investigación
Ponencias en congresos:
Grammar-Guided Evolutionary Construction of Bayesian networks
Año:2011
Áreas de investigación
  • Ciencias de la computación y tecnología informática
Datos
Descripción
This paper proposes the EvoBANE system. EvoBANE automatically generates Bayesian networks for solving special-purpose problems. EvoBANE evolves a population of individuals that codify Bayesian networks until it finds near optimal individual that solves a given classification problem. EvoBANE has the flexibility to modify the constraints that condition the solution search space, self-adapting to the specifications of the problem to be solved. The system extends the GGEAS architecture. GGEAS is a general-purpose grammar-guided evolutionary automatic system, whose modular structure favors its application to the automatic construction of intelligent systems. EvoBANE has been applied to two classification benchmark datasets belonging to different application domains, and statistically compared with a genetic algorithm performing the same tasks. Results show that the proposed system performed better, as it manages different complexity constraints in order to find the simplest solution that best solves every problem.
Internacional
Si
Nombre congreso
4th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2011
Tipo de participación
960
Lugar del congreso
La Palma, Spain
Revisores
Si
ISBN o ISSN
978-3-642-21343-4
DOI
Fecha inicio congreso
30/05/2011
Fecha fin congreso
03/06/2011
Desde la página
60
Hasta la página
69
Título de las actas
Lecture Notes In Computer Sciences 6686, Foundations on Natural and Artificial Computation
Esta actividad pertenece a memorias de investigación
Participantes
  • Autor: José María Font Fernández (UPM)
  • Autor: Daniel Manrique Gamo (UPM)
  • Autor: Eduardo Pascua Salvador (Universidad Politécnica de Madrid)
Grupos de investigación, Departamentos, Centros e Institutos de I+D+i relacionados
  • Creador: Grupo de Investigación: Grupo de Inteligencia Artificial (LIA)
  • Departamento: Inteligencia Artificial
S2i 2021 Observatorio de investigación @ UPM con la colaboración del Consejo Social UPM
Cofinanciación del MINECO en el marco del Programa INNCIDE 2011 (OTR-2011-0236)
Cofinanciación del MINECO en el marco del Programa INNPACTO (IPT-020000-2010-22)